现代工业产品智能化、物联化程度不断提升,已发展为以机械系统为主体,集电子、控制、液压等多个领域子系统于一体的复杂多领域系统。传统的系统工程研制模式中研发要素的载体为文档,设计方案的验证依赖实物试验,存在设计数据同源、信息可追溯性、早期仿真验证及知识复用性不足等不足,与当前复杂系统研制的高要求愈发不相适应,难以支撑日益复杂的研制任务需求。
基于模型的系统工程 (MBSE)以模型为载体,用数字化模型作为研发要素的载体,实现描述系统架构、功能、性能、规格需求的各个要素的数字化模型表达,依托模型可追溯、可验证的特点,实现基于模型的仿真闭环,为方案的早期验证和知识复用创造了条件。
MWORKS是同元软控基于国际知识统一表达与互联标准打造的系统智能设计与验证平台,是MBSE方法落地的使能工具。平台自主可控,为复杂系统工程研制提供全生命周期支持,并已经过大量工程验证。
MWORKS平台采用基于模型的方法全面支撑系统研制,通过不同层次、不同类型的仿真实现系统设计的验证。围绕系统研制的方案论证、系统设计验证、测试运维阶段,MWORKS分别提供小回路、大回路和数字孪生虚实闭环等三个设计验证闭环:
1.小回路设计验证闭环
在传统研制流程中,70%的设计错误在系统设计阶段被引入。在论证阶段引入小回路设计验证闭环,可以实现系统方案的早期验证,提前暴露系统设计缺陷与错误。
基于模型的系统设计以用户需求为输入,能够快速构建系统初步方案,然后进行计算和多方案比较得到论证结果,在设计早期就实现多领域系统综合仿真验证,确保系统架构设计和系统指标分解的合理性。
2.大回路设计验证闭环
在传统研制流程中,80%的问题在实物集成测试阶段被发现。引入大回路设计验证闭环,通过多学科统一建模仿真、联合仿真,可以实现设计方案的数字化验证,利用虚拟试验对实物试验进行补充和拓展。
在系统初步方案基础上开展细化设计,以系统架构为设计约束,各专业开展专业设计、仿真,最后回归到总体,开展多学科联合仿真,验证详细设计方案的有效性与合理性,并开展多学科设计优化,实现设计即正确。
3.数字孪生虚拟闭环
在测试和运维阶段,构建基于Modelica+的数字孪生模型,实现对系统的模拟、监控、评估、预测、优化、控制,对传统的基于实物试验的测试验证与基于测量数据的运行维护进行补充和拓展。
利用系统仿真工具建立产品数字功能样机,通过半物理工具实现与物理产品的同步映射与交互,形成数字孪生闭环,为产品测试、运维阶段提供虚实融合的研制分析支持。
产品描述
科学计算环境MWORKS.Syslab
Syslab是MWORKS平台全新推出新一代科学计算环境,基于科学计算高性能动态高级程序设计语言提供交互式编程环境的完备功能。Syslab支持多范式统一编程,简约与性能兼顾,内置通用编程、数学、符号数学、曲线拟合、信号处理、通信等函数库;用于科学计算、数据分析、算法设计、机器学习等领域,并通过内置丰富的图形进行数据可视化。
系统建模仿真环境MWORKS.Sysplorer
面向多领域工业产品的系统级综合设计与仿真验证平台,完全支持多领域统一建模规范Modelica,遵循现实中拓扑结构的层次化建模方式,支撑基于模型的系统工程应用。
系统协同建模与模型数据管理平台MWORKS.Syslink
基于模型的系统工程环境中的模型、数据及相关工件协同管理解决方案,将传统面向文件的协同转变为面向模型的协同,为工程师屏蔽通用版本管理工具复杂的配置和操作,提供图形化、面向对象的协同建模和模型管理功能。
工具箱MWORKS.Toolbox
依托MWORKS平台软件,提供过程集成、试验设计与优化、PHM、VV&A、 半物 理、联合仿真及数据可视化等丰富的实用工具箱,满足多样化的数字化设计、分析、仿真及优化需求。
多领域工业模型库MWORKS.Library
覆盖液压、传动、电气、热流、控制、动力学等多个专业领域,以及航天、航空、能源、车辆、工程机械等行业,支持系统/子系统/单机的设计仿真验证。